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AMBIGUZTY AND UNCERTAINTY IN PROBABILISTIC INFERENCE

The literature on how people make judgments under uncertainty is large,

complex, and rife with controversy (see e.g., Edwards, 1954, 1968; Peterson &

Beach, 1967, Slovic G Lichtenstein, 1971; Rappoport a Walisten, 1972, Slovic,

Lichtenstein, FiscLhhoff, 19771 Zinhorn a Hogarth, 1981; Kahneman, Slovic, G

Tversky, 1982, Cohen, 1982; Kyburg, 1983). One reason for the controversy is

that while there is agreement that "uncertainty" is a crucial factor in

inference, there is much less agreement about its meaning and measurement (cof.

Tversky a Kahneman, 1982). In particular, while most psychological work on

inference has been guided by a Bayesian or subjectivist view of probability,

increasing concerns have been expressed about this position (e.g., Cohen,

1977; Shafer, 1978). Central to the Bayesian view is the idea that prob-

ability, which is a measure of one's degree of belief, can be operationalized

via choices amongst gambles (Savage, 1954). Thus, if two gambles have

identical payoffs but one is preferred to the other, it follows that the

probability of winning is greater for the chosen alternative.

The subjectivist view of probability gains much of its force by making

expressions of uncertainty operational via choices amongst gambles. However,

whereas probability is thereby defined precisely, does this procedure capture

the essential psychological aspects of uncertainty? In particular, how valid

is the assumption that expressions of uncertainty can be captured through

choices amongst gambles? An important and direct attack on this assumption

was put forward by Daniel Ellsberg (1961) and we examine his arguments below.

In doing so, however, we stress that our intent is to understand the psycho-

logical bases of uncertainty rather than to critique the normative status of

the ayesian position.

.* **.*%**. * * * * ** .. ..
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Zllsberg (1961) used the following example to show that the uncertainty

people experience has several aspects, one of which is not captured in the

usual betting paradigms Imagine two urns, each containing red and black

balls. In urn 1, there are 100 balls but the proportions of red and black are -.

unknown; urn 2 contains 50 red and 50 black balls. Now consider a gamble such

that, if you bet on red and it is drawn from the urn you get $100, similarly

for black. However, if you bet on the wrong color, the payoff is $0. Imagine

having to decide which color to bet on if a ball is to be drawn from urn 1;

i.e., the choices are red (R1 ), black (B1), or indifference (1). What about

the same choices in urn 2, (R2 ), (B2 ) , or (M)? Most people are indifferent in

both cases, suggesting that the subjective probability of red in urn 1 is the

same as the known proportion in urn 2--namely .5. However, would you be

indifferent to betting on red if urn 1 were to be used vs. betting on red

using urn 2 (R1 vs. R 2)? Similarly, what about B1 vs. B2? Many people find

that they prefer R2 over R1 even though their indifference judgments within

both urns imply that, p(R1) - p(R2 ) - .5. Furthermore, the same person who

prefers R2 over R1 may also prefer 92 over B1  This pattern of responses is

inconsistent with the idea that even a rank order of probabilities can be

inferred from choices. Thus, if R2 is preferred over R 1, this implies

-" that p(R2 ) > p(P1 ). Moreover, since red and black are complementary events,

this means that p(n2 ) < p(B1 ). However, if B2 is preferred over B1, then

pIB2 ) > P30) which contradicts the preceding inequality. it is also impor-

tant to note that if p(R2 ) > p(R1 ) and P(92 )  p( 1 ), then either urn 2 .:

has complementary probabilities summing to more than 1 (super-additivity), or,

urn 1 has complementary probabilities summing to less than 1 (sub-additivity).

" Although Ellsberg did not specifically discuss the non-additivity of comple-

mentary probabilities (cf. Fellner, 1961), we shall show that it is intimately

-j .o.*** * *.**
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related to the effects of different types of uncertainty on probabilistic

judgments.

From our perspective, the importance of Ellsberg's paradox lies in the

difference in the nature of the uncertainty between urns 1 and 2. In urn 1,

whereas one's best estimate of the proportion may be .5, confidence in that

estimate in low. In urn 2, on the other hand, one is at least certain about

the uncertainty in the urn. While it may seem strange, and even awkward, to

speak of uncertainty as being more or less certain itself, such a concept

captures an important aspect of how people make inferences from unknown, or

" :only partially known, generating processes. Indeed, the idea of uncertainty

about uncertainty has been considered from time-to-time under the rubrics,

"second-orderw uncertainty and probabilities for probabilities (e.g.,

Harschak, 1975). However, whereas this concept has received little support

amongst subjectivist statisticians (see e.g., de Finetti, 1977), its status as

a psychological factor of importance for understanding choice and inference

has been demonstrated experimentally (Becker & Brownson, 1964; Yates a

Zukowski, 1976). On the other hand, the process by which such second-order

uncertainty is used in inference and the factors that affect its use, have not

been systematically studied. To be sure, Ellsberg suggested a number of vari-

ables that should affect the "ambiguity" of a situation, including the amount,

type, reliability, and degree of conflict in the available information.

Indeed, he stated,

Ambiguity is a subjective variable, but it should be possible
to identify 'objectively' some situations likely to present
high ambiguity, by noting situations where available informa-

* tion is scanty or obviously unreliable or highly conflicting;
or where expressed expectations of different individuals differ
widely; or where expressed confidence in estimates tends to be
low. Thus, as compared with the effects of familiar production
decisions or well-known random processes (like coin-flipping or
roulette), the results of Research and Development, or the per-
formance of a new President, or the tactics of an unfamiliar

%. %. %
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opponent are all likely to appear ambiguous. (1961, pp. 660-
661).

To specify the concept of ambiguity more precisely, reconsider the urn

where the proportion of red and black balls is unknown. From a Bayesian

perspective, this situation can be thought of as one in which the judge has a

diffuse prior over all possible values of the proportion, p(R). However,

imagine that one sampled four balls (without replacement) and got 3 red and 1

black. Note that this result rules out certain values of p(R) and could

change one's assessment of other values of p(R). Furthermore, as the sample b

size increases, one should become more sure as to the actual value of p(R).

Therefore, as information increases, ignorance (a uniform distribution), gives

way to ambiguity (a non-uniform distribution over all outcomes), which then

reduces to a known p(R). However, while it is tempting to equate ambiguity

with some statistical measure of the dispersion of the subjective distribu-

tion, this is unsatisfactory for the following reason: consider an urn that

contains either all red or all black balls but you don't know which. In such

a case we can characterize the distribution over p(R) as having half its

mass at zero and half at one. note that the variance or range of this

distribution is high, yet, ambiguity is low. The reason is that such a

distribution rules out all values of p(R) other than 0 or 1 and is thus

close to the case where ambiguity doesn't exist (as in urn 2). Therefore, in

accord with its dictionary definition, "having two or more possible meanings,"

ambiguity is a function of the number of alternative parameter values that are .

not ruled out (or made implausible) by one's knowledge of the situation. Note

that this definition is similar to, but not identical with, statistical

measures such as variance, range, and the like.

It is important to note that sample size is only one factor that

influences ambiguity since other information can affect the probability

:,," . ,. ....,..,,., ... ..,,..... , ... ..-.... ..... .. . ....... .-..-...... ...- . .- . .. ... . . .- ,,......,
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distribution over the parameter of a stochastic process. Thus, imagine an urn

factory where employees color balls by throwing them at two adjacent cans of .

black and red paint from a distance of 20 feet. Given our knowledge of this

process, it eems fair to expect that an urn of 100 balls would not contain

extreme proportions of red or black. A second example, due to Gardenfors and

Sahlin (1982), is particularly illuminating on this issue:

. . . consider Miss Julia who is invited to bet on the outcome
of three different tennis matches. As regards match A, she is
very well-informed about the two players . . . . miss Julie
predicts that it will be a very even match and a mere chance
will determine the winner. In match B, she knows nothing what-
soever about the relative strength of the contestants . . . and
has no other information that is relevant for predicting the
winner of the match. Match C is similar to match B except that
Kiss Julie has happened to hear that one of the contestants is
an excellent tennis player, although she does not know anything .
about which player it is, and that the second player is indeed
an amateur so that everybody considers the outcome of the match
a foregone conclusion. (pp. 361-362).

Note that the amount and type of information in the three situations is quite

different, as is the amount of ambiguity (we would argue that match A has the -.

least ambiguity and match B the most). From our perspective, how does the

amount and type of ambiguity affect judgments of the probability of winning or

losing the match? Would Miss Julie, for example, judge that each player in

the three matches has a .5 chance of winning (or losing)?

Our discussion so far has implied that ambiguity is generally avoided

since it adds to the total uncertainty of a situation. Indeed, this is

explicitly mentioned by Ellsberg (1961, p. 666) in discussing why new

technologies will be resisted more than one would expect on the basis of their

first-order probabilities. However, this picture is not completely accurate,

as is made clear by another Zllsberg example (as quoted in Becker B Irownson,

1964, pp. 63-4, footnote 4): consider two urns with 1000 balls each. In urn

1, each ball is numbered from 1 to 1000 and the probability of drawing any
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number is .001.* In urn 11, there are an unknown number of balls bearing any

3 single number. 'Thus, there may be 1000 balls with number 687, no balls with

this number, or anything in between. if there is a prize for drawing number

* 687 from the urn, would you prefer to draw from urn I or urn 11? Note that

3 urn I has no ambiguity and each numbered ball has the same .001 chance of

being drawn. Urn 11, on the other hand, can be characterized as inducing

- extreme ambiguity (i.e., ignorance). However, for many people, the drawing

3 from urn 11 seems considerably more attractive than from urn 1, thereby

implying that there are situations in which ambiguity is preferred rather than

avoided. This is considered in detail later, but we note here that accounting

- for such shifts is an important criterion for judging the adequacy of any

theory of inference under ambiguity.

Finally, the concepts of ambiguity, second-order uncertainty, and the

like, have been of concern in theories of inference quite apart from their

role in affecting choice. For example, work on fuzzy sets (Zadeh, 1978),

Shafer's theory of evidence (1976), Cohen's (1977) attempt to formalize

* uncertainty in legal settings, and the elicitation of probability range.

(Walleten, Forsyth, a Budescu, 1983), all contain ideas concerning the

vagueness that can underly probabilities. indeed, statisticians have provided

axiomatic systems for trying to formalize probability ranges and rank orders

rather than specific values (e.g., Koopsan, 1940).* Moreover, early work by

Keynes (1921) also addressed the notion of ambiguity by distinguishing between

probability and what he called the "weight of evidence.* Keynes stated:

The magnitude of the probability. . .depends upon a balance
between what may be termed the favourable, and the unfavourable
evidence; a new piece of evidence which leaves this balance

-. unchanged, also leaves the probability of the argument unchanged.
out it seem that there may be another respect in which some kind
of quantitative comparison between arguments is possible. This
comparison turns upon a balance, not between the favourable and
unfavourable evidence, but between the absolute amounts of

S..

S..
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relevant knowledge and of relevant ignorance respectively.
(Keynes, 1921, p. 71, original emphasis).

Plan of the Paper

We first present a descriptive model of how people make probability judg-

ments and choices under varying amounts of ambiguity. We require that our

model be able tot (1) Explain the pattern of choices elicited by Ellsberg's

problem. This, in turn, implies that the model account for sub-and super-

additivity of the probabilities of complementary events; (2) specify the

conditions under which people will seek as well as avoid ambiguity; (3) allow

for individual differences; and (4) be empirically testable. To meet e

criteria, the model is tested in four experiments at both the aggrer and

individual subject levels. Two of the experiments concern inferenc t; s,

and two involve choices. The implications of the theory and empirical work

are then discussed in relation to: (a) the importance of ambiguity in

assessing perceived uncertainty; (b) the use of cognitive strategies in

understanding probabilistic judgments under ambiguity, (c) the role of

.- ambiguity in risky choice; and (d) extensions of the model to multiple sources

and time periods.

A Descriptive Ndel

Our model postulates an "anchoring and adjustment" strategy for assessing

probabilities. This involves an initial estimate, denoted pA' and an

adjustment to reflect the ambiguity in the situation. Thus, the ensuing

judgment, VpA), is given by,

S(PA ) "A P+ k 11"":

where k is the net effect of the adjustment process. To model the adjust-

ment process, we propose that people engage in a mental simulation in which

V-
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other values of p are considered by imagining how well they express one's

uncertainty. These simulated values are then incorporated into the adjustment

term. The rationale for the simulation is that in ambiguous situations, p

can be any one of a number of values. By incorporating the range of possible

values of p into their judgments, people can maintain sensitivity to both

uncertainty and ambiguity.

We further argue that k, the net effect of the simulation, will be

affected by three factors: (1) The level of PA; that is, since S(PA)

varies between 0 and 1, equation (1) implies that -P 4 k 4 -p This

means that the direction of the adjustment must be due, in part, to the value

of pA" Indeed, when pA 0, k > 0, and the adjustment (if there is one)

must be upward; when pA 1, k 4 0, so that the adjustment must be downward;

when PA * 0, 1, adjustments can be up or down; (2) the amount of ambiguity

perceived in the situation. We denote this by a parameter 8, which

determines the absolute size of the adjustment, i.e., the larger e, the

larger the adjustment; (3) the person's attitude toward ambiguity in the

circumstances. This is reflected in the tendency to give differential

attention or weight to values of p that are greater or smaller than the

initial estimate, PA. One's attitude toward ambiguity is denoted by $, and 7'

this parameter, together with pA' determines the sign of the net effect of

the adjustment, i.e., when k is positive or negative.

To model the adjustment process algebraically, let

k - k - k (2)
g

where kg denotes the effect of imagining values of p Sreater than the

initial estimate, and k. the effect of imagining smaller values. How does"-

perceived ambiguity affects these quantities? To answer this, consider Figure

1, which shows the position of pA relative to the end points of 0 and 1.

•. ... " .. . .• ". ".'.?". '" .,'. .'_-,'."-...............................................,. 2 '"
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Note that the maximum upward adjustment to V ,is ( -pA) and the maximum

downward adjustment is . if we restrict the range of 0 to the unit

interval (0 4 e 4 1), then maximum adjustments would occur under complete

I
ambiguity (e- 1), and zero adjustments under no ambiguity (0 = 0). This

suggests that the effects of simulating values greater and smaller than PA

(kg and ks, respectively), can be represented as proportions of the maximum

adjustments where 0 is the constant of proportionality, i.e.,

k - 3a)
g 

-PA)

and ks -GpA (3b)

The development so far ignores the possibility that greater and smaller

values than PA could be differentially weighted. For example, in estimating

the chance of an accident la a new technology (high ambiguity), one may start

with the estimate offered by the engineering department and then weight larger

values of p(accident) more than smaller ones. To account for differential

weighting effects, we need only weight either k or ke to affect k. For

convenience, we weight ks  (rather than kg) by I as follows,

ks pi- (1, 0) (4)

Thus, the net effect of the adjustment process is given by,

k k - k (5)
9 5

When (5) is substituted into (1), the full model becomes,

S(pA- .(1 A A (6)
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Figure 1. Anchor of pA and range of adjustments.



We make several points with respect to equation (6). First, note that

9 affects the absolute size of the adjustment factor. That is, when there is

no ambiguity, 0 - 0 and S(p.) p Thus, 0 can be thought of as having

a magnifying or dampening effect on one's attitude toward ambiguity in the

circumstances, (0). For example, if perceived ambiguity is small, the

tendency to weight differentially values of p above and below pA is of

little consequence.

Second, S(p) is regressive with respect to p. This can be illustrated

by considering the effects of different values of B in equation (6).

Specifically, the three panels of Figure 2 illustrate "ambiguity functions"

with B < 1, B > 1, and B - 1. (0 is shown to be the same in all three

cases.) it is important to note that each value of B defines a unique

Inert "Figure 2 about here

*cross-over" point, pc, where S(p) - p. Thus, in Figure 2a, B defines

pcl such that small probabilities are overweighted and larger probabilities

underweighted. This form of the function results because 0 < 1 implies that

more weight is given to smaller values of p rather than larger ones. There-

fore, k < 0 over most of the range of p. However, when pA < pct' there

are few smaller values of p to consider relative to larger ones. Thus, even

when smaller values are weighted more heavily than larger ones, there are more

of the latter and k > 0. Conversely, when B > 1, as shown in Figure 2b,

S(p) > p over most of the range of p since more weight is given to larger

as opposed to smaller p's. However, when PA > Pc2' S(p) < p since there

are few larger values and k < 0. Finally, note that in Figure 2c, when B

- 1, the cross-over point is at .5. N

Third, equation (6) implies the conditions under which probability

* judgments of complementary events are additive (sum to one). Specifically,

J** '6"

.a~x* ~ *. * *. * -. . '
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consider the sum of 8(pA) and S(1-pp,). This is

S(PA) + S(1•pA) PA + '-A-A + 0 + G[I-(I-PA) -PA)

Thus, complementary probabilities are additive Mf e 0, or 0 1 or pA

-0, 11 otherwise, there is sub-additivity if < 1, and super-additivity if

> 1.

lburth, there are many ways we could have chosen to incorporate the r

parameter in the model. However, not all form have the same implications,

particularly with respect to the additivity of complementary probabilities.

We consider several alternative models in Appendix A. b-"

To summarize, the model has two parameters and both are functions of

individual and situational factors. The 0 parameter reflects perceived

ambiguity and the degree to which one simulates values of p that Omight -

be.* However, situational factor. are also likely to affect e (across

people); e.g., the absolute amount of evidence available, the unreliability of

surces, lack of causal knowledge regarding the process generating outcomes,

and so on. The , parameter reflects the extent to which one differentially

weights in imagination possible values of p that are smaller vs. larger

than PA. As such, B may be related to an optimism-pessimism attitude at

the individual level. However, we argue that will also be influenced by

situational variables such as the sign and size of the payoffs that are

contingent on the ambiguous probability. For example, if the general effect

of ambiguity is to induce caution rather than riskiness, the prospect of an

undesirable outcome (e.g., monetary losses) would induce people to pay more

attention in imagination to values of p(Loss) that are larger than

.. " -weimhily thagnaroposeae of a ganwolhfcsateto o saller vluesro

I .As uc, 1 ma b reate t anopie~sm-eniu~sm t2;2d a
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p(Gain). We consider this issue further in connection with experiments 3 and 4.

We now consider how the model in (6) explains Ellsberg's original results.

• Note Figure 2a, where e > 0 and S C 1. A person with parameter values in

* these ranges will "underweight" all p above PC, and *overweight* A <

PC* This particular pattern explains why most people in Ellsberg's urn

* example avoid the ambiguous urn 1; that is, S(pA = .5) < .50. However, note

* that if PA is les than PC' S(pA) > PA and one would expect the same

person who avoided the ambiguous urn when pA - .5, to prefer the ambiguous

* urn when pA is sufficiently low (e.g., when pA .001). The pattern of

overweightLng small pA and underweighting moderate-to-large PA also

accounts for some otherwise puzzling results of Goldsmith and Sahlin (as

reported in Gardenfors a Sahlin, 1982). They presented subjects with

- descriptions of either well-known events (e.g., drawing cards from a standard

deck), or events about which the subjects had little knowledge (e.g., the

likelihood of a bus strike in Verona, Italy next week). Subjects estimated

the probabilities of the events and the perceived reliability of their

probability estimates. Events with equal probabilities but unequal reli-

abilities were then used in a lottery set-up. The authors report that,

. . f'jr probabilities other than fairly low ones, lottery
tickets involving more reliable probability estimates tend to be
preferred. (Girdenfors a Sahlin, 1982, p. 363, our emphasis.)

While the pattern shown in Figure 2a accounts for much data, it does not

explain why some people in the Ellsberg task prefer to bet on drawing from the

ambiguous urn when pA .5. However, consider a person with an S(pA)

function as shown in Figure 2b. When 0 > 0 and 0 > 1, one gets "ambiguity

preference" over most of the range of PA. Thus, when PA < Pc, S(PA) > PA

and overweighting occurs; when pA > PC, SlpA) < pA and underweighting

occurs. Since individual differences are rarely accounted for in research on

, .* * * * .

.." " . % " ' "% % " . " • " * -g-. " % "" % ~***~* * ". % -".%* "% % " * % - .' - ' %. % " % '"- , . " .*
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decisions under uncertainty, our model has the distinct advantage of positing

a general psychological process while allowing for individual differences via

particular parameter values. Indeed, this is nicely illustrated by consider-

ing people who are indifferent between gambles from ambiguous and unambiguous

urns when PA - .5 (as in the Ellsberg case). Our model suggests two

distinct types: those for whom G - 0, and thus, S(pA) - p; and those

* for whom e > 0 and 0 - 1 (shown in Figure 2c). This latter group does not

adjust at PA = .5, but does adjust at all other values. Therefore, people .

characterized by these parameter values will only be indifferent between

lotteries at .5.

Finally, we note that our model is relevant to a major psychological .

theory of risk; namely, *prospect theory* (Kahneman a Tversky, 1979). From

our perspective, the treatment of uncertainty in prospect theory is consistent

with our approach since a decisLon-weLght function is posited that is remark-

ably similar to the S(pA) function shown in Figure 2a. This is not a

coincidence since, as Kahneman and Tversky specifically point out, decision

weights can be affected by ambiguity. Indeed, they state,

The decision weight associated with an event will depend
primarily on the perceived likelihood of that event, which could
be subject to major biases. In addition, decision weights may be
affected by other considerations, such as ambiguity or
vagueness. Indeed, the work of Ellsberg and Fellner implies that
vagueness reduces decision weights. (p. 289)

While our equation (6) could be made fully compatible with the decisLon-weLght

function of prospect theory (by restricting its applicability to 0 < p <1

and thereby not defining the end points),' we wish to emphasize that (6)

expresses a class of functions. Therefore, while the decision-weight function

of prospect theory expresses a general tendency to treat uncertainty in a
.\ .

particular way, (6) allows for both situational variables and individual

differences in the handling of uncertainty.

-p .*. * . . . . . . .... ... .,;. .. •". , -",, -':, ,".," .".".. ".",".. ..-. .-.. .,., .",.. .,. ...- "..: -.. .,. ,".",,.,",", :,"."., ,"*,, V,., -
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EXPERIMENTAL TESTS OF THE MODEL

To test our model empirically, we employed two tasks that focused on

inference (experiments 1-2) and two dealing with choice (experiments 3-4). In

the inference task, people were asked to make probability judgments on the

basis of numbers of reports from a source. In experiment 1, we examined the

various implications of equation (6). In experiment 2, we used different

scenarios to manipulate e in both a between and within-subjects design. In

addition, the consistency of individual differences in strategy (as measured ..

"" by a person's e and B parameters) was also considered. Experiment 3

involved an attempt to answer the question: Can an individual's choices

between gambles be predicted from knowledge of his or her G and B

parameters obtained from a separate inference task? Finally, in experiment 4,

people were asked to be either buyers or sellers of insurance in ambiguous and

non-ambiguous situations. Differences between buying and selling prices were

then investigated as a function of assumed differences in 0 parameters.

Since experiments 1-3 are all based on the same type of inference task, we

first explicate the underlying nature of this task, noting how it differs from

other probabilistic tasks considered in the literature.

A Model for Studying Ambiguity in Inference

The prototypical inference that we consider involves a judge assessing

the likelihood of the occurrence of an event based on reports received from..

a source of limited reliability. The task can be thought of as having the

elements schematically represented in Figure 3. (1) An event occurs;

" (2) The event is "sensed" by observers (e.g., witnesses to an accident) who,

Insert Figure 3 about here

.~~~~~ . . . .. °
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in principle, can be characterized by levels of sensitivity and bias. How-

ever, it is important to emphasize that these levels are unknown to the judge

(see 5 below); (3) The observers report what they saw. We denote A* as the

report of event A, and B* an the report of event B, where the decision rule

is to report A* if the observation is above some critical value X., and

B* otherwise. The reports can therefore be conceptualized as coming from a

signal-detection task; (4) Since there are n observers, n reports are

collected. Thus, the n reports can be thought of as the outcomes of n

observers reporting on a single trial of a signal detection task. Further-

more, since we do not differentiate between the n observers, we refer to

them as coming from a single source; (5) The judge receives the information in

the form of f reports for a hypothesis (i.e., f reports of A*) and c

reports of an alternative (i.e., c reports of B*), where f+c = n, and p -

f/n. The content of the scenario, however, is assumed to give the judge some

information as to what values of p to expect in a sample of size n.

Specifically, we argue that expectations concerning p will be influenced by,

(a) the dissimilarity between events R and ,; and (b) the credibility of the

source. By Ocredibility" we mean the sensitivity and response bias of the

observers in judging the particular events of interest. For example, imagine

that you are a detective investigating a bank robbery where two witnesses

claim that the robber has blond hair and one witness claims it is brown. How

likely does the robber have blond hair? While the detective knows neither the

hit and false alarm rates of the witnesses, nor their response bias for saying

"blond" vs. "brown," he may know something about the quality of eye-witnesses

in a robbery, the contusability of blond and brown in the circumstances, and

perhaps something about the motivation of the witnesses. Now contrast this

situation where the source is two color television cameras that were filming

",. .... , , , .' : .. ,..
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the robbery at the bank. Whereas in the former case the detective would

expect the reports to conflict (i.e., 0 < p < 1), in the latter it would be

surprising if p were not equal to either 0 or 1.

Note that in Figure 3, we have represented the judge's expectations by

three different distributions. in distribution (1), the information about the

credibility of the source, the dissimilarity of the signals, and the size of

the sample, does not rule out many values of p. This is a highly ambiguous

situation and would, for example, characterize the detective trying to judge

evidence from witnesses. Distribution (2) characterizes expectations based on

a highly credible source that discriminates between dissimilar signals; e.g.,

evidence from cameras filming the robbery. We believe that ambiguity is low
L
. here since our knowledge of the process that generates evidence rules out most

'* values of p. Distribution (3) also represents a situation of low ambiguity,

but it is quite different from (2). Indeed, (3) is likely to result when the

credibility of the source is particularly low and/or the signals are very

similar, in direct opposition to the conditions that produce (2). For

example, imagine a taste-test between Pepsi vs. Coke for randomly chosen

shoppers. If we believe that the two drinks have a very similar taste and

that most shoppers are not able to tell the difference, we would expect the

proportion of reports for either product to be around .5. Thus, results from

such a test might be seen as most closely resembling the drawing of balls from

an urn with known p - .3. It is interesting to note that whereas some

authors have equated increased reliability of evidence with less ambiguity (as

suggested by Ellsberg, for example), distribution (3) shows that decreased

reliability can also lead to low ambiguity. Another way to express this is to

note that high reliability implies low ambiguity (distribution (2)), but low

L ~mbiguity does not imply high reliability (since distribution (3) could be

I-.

.* . . . . . . . . . . ..
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involved); (6) The judge combines the information from the reports with
expectations about p to reach an assessment of the likelihood of A.

The structure of this task is both similar to and different from several

probabilistic models of the inference process. First, it is similar to

cascaded inference in that the judge is making inferences about an event

on the basis of unreliable reports (of. Schum Kelley, 19731 Schum, 1980).

However, in contrast to studies of cascaded inference, the judge does not know

the precise value of the source's reliability, rather, there is ambiguity

concerning what this is.

Second, since each observer can be thought of as participating in the

same signal detection task, the reports not only reflect their sensitivity to

competing signals, but also their bias due to differential payoffs. However,

as recently emphasized by Birnbaum (1983), the manner in which the judge

treats the observer reports depends on some theory about the observers. For

example, the observer reports could be responsive to the prior probabilities

of A and B as well as to differential payoffs. We emphasize that in our task

the judge is not given precise information about these eatters. Furthermore,

since the judge only receives information on a single trial, the observers'

hit-rate and false-alarm rate are not known. Instead, the observed p, and

the judge's expectations about p, become cues to the likelihood that the

event occurred.

Third, one night consider our situation as a conventional Bayesian

revision task (of. Edwards, 1968). However, the explicit probabilities

necessary to assess the likelihood functions are not provided; and, no base-

rate data or prior probabilities are stated. It would, of course, be possible

to provide the judge with explicit prior probabilities. This would, however,

be extending our paradigm to one where multiple sources of information need to

-I.%
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be combined, i.e., base-rates and individuating information. For the sake of

simplicity, we only consider the effects of ambiguity on inferences from a

". single source and thus do not discuss the effects of explicit base rates

* (extensions of our model to mltiple sources is considered in the Discussion

section).

in this model, note that we have explicitly recognized three sources of

!. ambiguity, viz: (a) the dissimilarity between events A and 3; (b) the credi-

bility of the source; and (c) the number of reports, or sample size, n.

Specifically, when n is small, one would expect ambiguity to be high;

however as n increases, we would expect ambiguity to decrease. Thus, to

"* incorporate the effects of n explicitly in our model, let e = 0w/n such

that,

S(fc) - + - - -( ,A ()

where S(f:c) - judged probability, and PA f/n. That is, in judging the

" probability of an event based on f reports "for" and c "con," people are

. assumed to anchor on f/n, and then adjust for the unreliability of the source

and the amount of data. The model in equation (8) has several implications:

". (1) Consider the effect of the amount of information (n) on judged likeli-

hood. Note that S pS as n + -. This means that as the amount of

o4 information increases, one becomes more certain as to the diagnosticity of the

data. It is important to realize that as n + -, S does not go to 0 or I as

; would be implied by a standar.1 Bayesian revision model. Instead, the fact "

that S asymptotes at pA parallels an analogous result in cascaded r,

inference where, under certain symmetry assumptions, the maximum probability

" of a hypothesis is bounded by the reliability of the reporting source (Schum a

*- DuCharme, 1971).

,]
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(2) Conditional on a given value of G7, the model implies that there

will be trade-offs between p and n in determining judged likelihood. For

example, one might find the evidence in favor of some hypothesis to be more

convincing on the basis of (9:1) than (2:0). However, because S asymptotes

at pA, trade-offs of p and n will only occur at small values of n.

(3) Since e - G'/n, n also affects the conditions underlying the

additivity of complementary probabilities. Specifically,

S(fc) + S(c:f) - 1 + *I:1 - -A (9)

Thus, in addition to the additivity conditions discussed in regard to equation

(7), as n , additivity will hold regardless of G', 0, or pA. Of

course, when n is small (meager data), adjustments will be substantial and

violations of additivity will be most likely.

Experiment 1 explicitly considers the role of n in equation (8),

whereas factors affecting 0' are the central concern of experiment 2.

perint I

Subjects. Thirty-two subjects were recruited through an ad in the

University newspaper which offered $5 an hour for participation in an

experiment on judgment. The median age of the subjects was 24, their

educational level was high (mean of 4.4 years of formal post-high school

education), and there were 16 males and 16 females.

Stimuli. The stimuli consisted of a set of scenarios that involved a

hit-and-run accident seen by varying numbers of witnesses. Moreover, of the

n witnesses to the accident, f claimed that it was a green car while c

claimed it was a blue car. A typical scenario was phrased as follows:

An automobile accident occurred at a street corner in down-
town Chicago. The car that caused the accident did not stop
but sped away from the scene. Of the n witnesses to the

.... *.**.%.-°.
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accident, f reported that the color of the offending car
was green, whereas c reported it was blue. On the basis of
this evidence, how likely is it that the car was green?

Zach scenario was printed on a separate page and contained a 0-100 point

rating scale that was used by the subject to judge how likely the accident was

caused by a particular colored car. Each stimulus contained the same basic

story but varied in the total number of witnesses (n), the number saying it

vs a green (f) or a blue car (c), and whether one was to judge the like-

lihood that the majority or minority position was true. in order to sample a

wide range of values of n and p, 40 combinations were chosen as follows:

for p - 1, n a 2, 6, 12, 20; p - .89, a - 9, 18, 27; p - .80, n - 5, 10, 15,

20, 25; p - .75, n -4; p - .67, n -3, 6, 9, 12, 15, 18, 24, p - .60, n -5,

10i p * .50, n - 2, 8, 12, 20, p - .40, n S 5, 10i p , .33, n - 6, 9, 18i p

- .25, n - 4; p ..20, n - 5, 10 p - .11, n - 9, 18; p 0 0, n - 2, 6, 12, 20.

Zn addition, 8 stimuli were given twice to ascertain test-retest reliability.

Thus, the total number of stimuli was 48, and they were arranged in booklet

form.

When the subiects entered the laboratory, they were told that the

experiment involved making inferential judgments. Furthermore, it was stated

that if they did well in the experiment (without specifying what this meant),

it was likely that they would be called for further experiments. Given the

relatively high hourly wage, this was thought to provide some incentive to

take the task seriously. Zn order to avoid boredom and to reduce the trans-

parency that judgments of complementary events were sometimes required,

subjects were given 4 sets of 12 stimuli and, after completing each set, they

performed a different task. All stimuli were randomly ordered within the four

sets. Subjects could take as much time as they needed and they were free to
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make as many (or as few) calculations as they wished. After completing the

task, all subjects filled out a questionnaire regarding various demographic

variables.

stimatang the Model

To estimate the model from the experimental data, we need to re-write

equation (8) and include a random error term to represent judgmental incon-

sistancyl therefore,

S (f C) PI, + 0( PAPO) +C (10)

. Equation (10) requires a non-linear estimation technique which was developed

in the following way: let S(f:c) be the actual response of the subject

and S(f:c) the predicted response froe the model. We wish to minimize some

loss function (we chose the man absolute deviation, MAD), by finding values

of e and 0 such that,

is(fsc) - (fc) -, minim (-.)

This was done by setting up a grid of values of Q and 0 and writing a

computer program to first compute the MAD for pairs of "coarse" values of G-

and 0. Since certain ranges of 0' and 0 can thus be excluded, the

program then considers "finer-grained" values until MAD is minimized. 2 The

output from this analysis is a unique set of values for e" and S that

minimizes the desired loss function.

Since the sampling distributions of 9' and B are not known, testing

the statistical significance of the model's fit to the data is problematic.

We therefore adopted the strategy of comparing the accuracy of S(fc) with

that of a model based solely on PA" Moreover, since pk is the anchor of

the assued process, any difference between the accuracy of pk and S(f:c)

* .. . . . . . . . . ., .
- .. . .. .... .... .... .... ...
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can be attributed to the adjustment process, and thus to G' and 0. We

emphasize that this procedure is biased against finding differences between

PA and S(f:c) for two reasons: Ca) the model predicts that S(f:c) * pA

as n increases. Thus, since we have included some large values of n to

test this prediction, if 3(f:c) - pA, this counts against, rather than for,

the model; b) the model further predicts that S(f:c) PA at the cross-over

point, Pco and will be close to pA in the region of pc. Again, if this

occurs, it counts against the model. We take this highly conservative

.. approach to guard against attributing random error in the data to an

adjustment process.

Results

Before discussing the major results, recall that for each subject, 8

stimuli were given twice so that test-retest reliability could be assessed.

This was done in two ways: (1) the correlation between judgments of the same

stimuli, within each subject (N - 8), was computed. The mean of these cor-

relations was .93, with 26 of the 32 coefficients greater than .90; (2) each

subject was considered a replication with 8 responses and the correlation

between judgments for identical stimuli, over subjects (N - 256 - 32 subjects

x 8 responses), was .91. Clearly, the reliability of the judgments was high,

regardless of the computational method.

For a general impression of how well the model fits the data, we first

consider an aggregate analysis (individual differences will be considered in

detail below). For each of the 48 stimuli, the judgments from the 32 subjects

were averaged to form the mean judged likelihood, §(f:c). This was then used

as the dependent variable to be fit by the model. The parameter values

obtained from the estimation program were, G - .35, B - .10 (implying

Pc .16). In addition, the mean absolute deviation of model and data was

5 ?" '%***%* *%* %** . . * . .
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.020, which is significantly lower than that of the baseline pA-model (MWD

.0411 p < .001 using a Wilcoxon matchod-pair. signed-ranks test).

To see whether the implications of the model hold, consider Table 1,

which shows 3(f:c) and 8(f3c) for the 48 stimuli. First, does

snert Table about here

S1f:c) p. an n increases? The data strongly support this when p1 " 1,

.67, .60, .S0, .40, and 0. At the values of .7S and .25, n was not varied

although the large adjustments do suggest that the expected effect would

occur. However, the effect of n is les clear at p - .99, .0, and .33

since there is little initial adjustment at small n. Taken together, these

results suggest moderate support for the hypothesis. Second, do p and

n trade-off in affecting judged likelihood? The evidence here is quite

* convincing: e.g., note that 8(601) - .8> >(2:0) - .35, 3(10:5) - .65 >

S13:1) - .63, 31:4) - .21 > 8(1:3) - .20. Of particular interest is the

result that S(0z2) - .16 > 3(1s:) - .12. This means that when there is * -

,. limited evidence, no data in favor of a hypothesis can be judged as stronger

evidence for that hypothesis than when more evidence is available with mixed

support. Third, an important implication of the model concerns the relation

between e, 0, and the additivity of complementary probabilities. Recall

from equation (7) that when 8 > 0 and 0 < 1, sub-additivity is predicted

for 0 < pA < 1. To test this prediction, consider Table 2, which shows both
A a; •

§(f:c) + §(c:f) and S(f:c) + S(c:f). Note that there is substantial sub-

additivity and the model does a reasonably good job of capturing it. In

judging the performance of the model in this regard, it is useful to remember

that we have gone beyond the qualitative prediction that sub-additivity will

,.**.%*..* --. % *1



TABLE I

Pit of the model for Aqgregate Data

2 1 .85 .93
6 1 .92 .94

12 1 .96 .97
20 1 .95 .98

9 - - -- - -- - - -- - -- - -.88 - - - - - --86 - -
Is .89 .87 .87

(18) (.89) (G8s) .87
27 .89 .87 .88

5 .80 .80 713.
C5) (.80) (.73) .75
10 .80 .79 .77
is .80 .81 .78
20 .80 .80 .79
25 *80 .82 .79

(25) (.80) (.80) .79
4 .17---- .63 U6

3.67 .61 .60
(3) (.67) (.59) .60

6 .67 .62 .63
C6) (.67) (.63) .63

9 .67 A6i .65
12 .67 .64 .65-
15 .67 .65 .66
i8 .67 .63 .66
24 .67 .66 .66-----------------------------------------------------------------

5 .60 .53
10 .60 .58 .58
2--- - -- -- 50-- -- -- - -- - -- 5- - -- - -- -- - -2 -
2 .50 .45 .48

c8) C.50) (.47) .48
12 .50 .47 .49
20 .50 .47 .49

-- -- - .-- - -- - --40 - - - - --36 - -- - -- -
10 .40 .39 .39

6 033 .3*32
C6) (.33) (.29) .32

9 .33 .27 .32
is. 1 .33 .29 .33

2. 5 .20 .24

10 :20 .19 .20
(10) (.20) (.18) .20

9 Oil .12 1

2 0 .16 .17
6 0 .07 .06

12 0 .06 .03
20 0 .04 .02

Notes Munbers; in parentheses are f or the repeat judqments.



TAME 2

Sub-additivity for the Aggregate Data

Actual Predicted

( - PA i(f:c) + S(c:f) s(f c) + S(C:f)

1 0 2 1.01 1.00

1 0 6 .99 1.00

1 0 12 1.01 1.00

1 0 20 .99 1.00

.89 .11 9 1.00 .97

.89 .I1 18 1.00 .98

(.89) (.11) (18) (.98) .98

.80 .20 5 1.01 .95

(.80) (.20) (5) .94 .95.

.80 .20 10 .98 .97

.75 .25 4 .83 .93

.67 .33 6 .92 .95
(.67) (.33) (6) (.92) .95

.67 .33 9 .88 .97

.67 .33 18 .92 .99

.60 .40 5 .89 .94

.60 .40 10 .97 .97

.SO .50 2 .90 ,84

.50 .50 8 .88 .96

(.SO) (.50) (8) (.94) .96

SO .50 12 .95 .98"

S0 .50 20 .94 .98

---- ------------------------------------------------------------------------------

Notes Umbers in parentheses are for the repeat judgments.

'- ... ... .. ... 6..
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be present in the data, to specifying both the amount of the effect and the

conditions under which it will not be present. Given these goals, we view the

results as supporting our model. Moreover, note that the baseline pA-model

would always predict perfect additivity and thus does not describe these data

well.

Individual analyses

Since each subject rated all stimuli, we can fit the model for each

person. These results are shown in Table 3. The table indicates substantial

Insert Table 3 about here

individual differences in the parameter values and the degree to which the

model fits the data (as indicated by the MAD's). When compared with the

aggregate analysis, the individual models contain considerably more noise

(recall that the MAD for the aggregate data is .020). Furthermore, in

comparing each subject's model against the baseline PA-model, 14 of the 32

subjects showed no significant adjustment process, as specified by our model,

while 18 did. The reason for the emphasis is that no subject, even those for

whom e 0 0, used a strict pA-strategy (i.e., S(f:c) =A for all pA

and n). Instead, some used PA most of the time but occasionally adjusted

for n at PA 0 and 1, while others had no clearly discernible strategy.

This helps to explain why the MAD for subjects with e" 4 .10 is not close to

zero, as would be expected if they simply used PA for making their

judgments. Indeed, subject 6 (G' - .02) had the highest MAD of the 32

subjects. Thus, there seem to be idiosyncratic ways of making probability

judgments that are not captured by equation (8).

The above should not detract from the fact that a majority of subjects

did show a significant adjustment in accord with the theory. We illustrate



TABLE 3

Pit of the Model for Individual Subjects

s " P MAD

1 .00 - .051 ns
2 .00 - .062 as
3 .02 001 .03 .002 am
4 .02 .14 .20 .025 ns
5 .02 e20 .24 .040 as
6 .02 .23 .27 .113 as
7 .05 .00 100 .007 as
8 010 1.00 .50 .052 no
9 .11 a11 .17 .025 *

10 .13 v02 .06 .037 *
11 .15 .00 .00 .081 *
12 .17 904 .09 .069 *
13 .24 .01 .03 .051 as
14 924 .21 .25 .031 ns
15 .28 10.90 .84 .051 *0
16 .30 60.00 .95 .052 as
17 .36 .01 .03 .052 **

18 .36 1.00 .50 .030 *
19 .37 .02 .06 .077 *
20 .37 .08 ,14 .033 **
21 .37 .12 ,18 .010 as
22 .42 .04 .09 .079 no
23 .42 .14 .20 .057 as
24 .44 .06 ,12 .027 ***
25 .48 ,02 .06 .088 *'
26 .50 .01 .03 .023 *
27 55 ,02 .06 .046 **
28 .64 ,11 .17 e053 **
29 .84 1.50 57 .070 *
30 .93 .89 .48 0069 **
31 1.34 .01 .03 .089 **
32 1.83 .03 .08 .106 000

• p < .05 (Wilcoxon test)
Sp< .01

*0* P < .001
as not significant

........... ,
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this by the results of five subjects, each representing a different con-

bination of 0' and parameters. This is shown in Table 4. Subject

Insert Table 4 about here "

26 illustrates the use of a highly consistent strategy in which downward

adjustments are made over almost the entire range of p. Subject 18 also has

a consistent strategy involving adjustments, but Pc " .50, implying that

adjustments will be down when PA > .5, up when pA < .5, and no adjustments

at PA - .5. The data conform quite closely to this pattern. Subject 15 has

a somewhat less consistent strategy of making small upward adjustments over

most of the range of p (PC - .84). Again, the data are generally consistent

with this interpretation. Subject 3 is included for contrast since, as can

be seen, there was almost total reliance on pA (as would be predicted by the

parameter values and low MAD). Subject 32 is shown to illustrate the most

extreme and least consistent adjustment process (which was generally

downward). As is evident from the data, this subject had difficulty in

"controlling" the adjustment process (cf. Hammond a Summers, 1972, on

"cognitive control"). This lack of consistency manifested itself in widely

different adjustments for the same stimuli as well as illogical judgments. An

example of the latter was that evidence of (0:2) was evaluated as stronger

than (2:0) (i.e., .40 vs. .30). The lack of consistency and large amount of

adjusting that characterize subject 32 suggested that there might be a

positive relation between the size of e' and MAD, over subjects. When we

investigated this, the correlation was r - .46 (p < .001). Thus, there seems

to be a connection between the amount of adjustment and the ability to execute

it consistently.

Our final results concern the additivity/non-additivity of complementary

probabilities for individual subjects. This is illustrated using the subjects

-
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TAME 4

Pit of the Ibdel for Selected Subjects

abhet 90 ft Subj et Subject ebjeet

626 616 615 63 632

a 6A S S a 5 3 5 S

2 1 .80 .75 .70 .62 .92 .o6 .99 .9 .30 .09
6 1 A9 .92 .9 .94 .46 .95 .99 1.00 .80 .70
12 1 *97 .94 .90 .97 .95 .96 .99 1.00 .80 .5
20 1 .90 .96 .88 .98 .66 .99 .99 1.00 .70 .91

9 .89 . .94 ol4 .46 . 4 89 .66 .09 .90 .71

1 .64 .67 .s .67 .67 .69 .9 .69 .80 .60
(16) .69 .67 .67 As .7 .87 .89 .69 .69 .70 .80
27 .89 .65 .69 .62 .66 .82 .89 .9 .89 .60 .3"

S .80 .77 .72 .SO .76 .65 .81 .60 .60 .60 ,$1
(10) .60 .72 .76 .80 .70 .62 .60 .60 .80 .90 .iS
10 .60 .76 .76 .80 .78 .4 .60 .0 .80 .60 .6S
15 .60 .79 .77 .79 .79 .74 .60 .60 .60 .70 .70
20 .80 .76 .78 .79 .79 .72 .80 .80 .80 .60 .73
25 .60 .76 .70 .60 .79 .AS .60 .80 .80 .90 .74

(25) .80 .76 .78 ,80 .79 .74 .60 .80 .60 .70 .74

4 ,75 .57 .64 .65 .70 .72 .76 .66 .75 .30 .41

2 .67 .57 .56 .64 .63 .74 .70 .66 .67 .20 .27
(3) .67 .61 .S6 ,6 .63 .7 .70 .66 .67 .20 .27

6 .67 .59 .61 .65 .65 .72 .69 .67 .67 .60 .47
(6) .67 57 .61 .65 .65 .72 .69 .46 .67 .30 .47
9 o67 .59 .63 .65 .66 .65 .66 .66 .67 .30 54

12 .67 .60 .61 o$4 .66 .72 .68 .66 .67 .40 .57
IS .67 .62 .6 .65 .66 .72 .68 .66 .67 .70 .59
16 .67 .63 .65 .65 .64 As .08 .67 .67 .70 .60
24 .67 .62 .66 .65 .66 .63 .67 .46 .67 .SO .2-

6 .50 .S2 .54 .60 .59 .67 .52 .0 .50 .30 .39
10 .50 .50 .47 .0 .59 .6 .51 .50 .60 .40 .49

a SO .30 4 38 ,s0 .50 .57 .57 .50 .50 .20 .06
2 .50 .42 , 49 .4 1. SO .53 .52 .50 .50 .30 .39
(5) .40 .0 .47 .40 ,S0 .52 .53 .50 .S0 .30 .39
10 .40 .47 .48 .40 .40 .54 .4I .50 .40 .30 .4320 ,SO .40 .49 .$1 .SO JSS .$I .S0 .50 .30 .46 -1

6 .40 .36 .36 .40 .41 .22 .43 .40 .40 .40 .26
10 .40 .40 .30 .40 .41 .34 .42 .39 .0 SO .33

6 .33 .26 .30 .31 .A4 .25 .35 .34 .33 .40 .24
(61 .32 .30 .32 .34 .35 .32 .36 .34 .33 .20 .24
9 .33 .25 .31 .24 .34 .35 .35 .33 .33 .20 .2718 .33 .30 .32 .34 .34 .33 .34 .33 .33 .30 .30 '1

4 .2S .25 .22 ,3 .30 .24 .30 ,AS .25 ,10 .AS '
]

5 .20 .16 .16 .21 .24 .23 .25 .20 .20 .20 .14
10 .20 .16 .19 .21 .22 .22 .22 .20 .20 .10 .17

(10) .20 .20 .19 .40 .22 .26 .22 .20 .20 .20 .17

9 .11 .06 .11 17 .14 .12 .12 .11 .11 .10 .10
16 .11 .06 .11 ,ls .13 .12 .12 .12 .11 .10 .10

2 0 0S .25 .10 .18 .14 .14 .00 .01 .40 .92
6 0 .03 .06 .10 .06 .13 .05 .00 .00 .30 .31
12 0 .02 .04 .10 .03 .14 .02 .00 .00 .20 .AS
20 0 .02 .03 .11 .02 .12 .01 .00 .00 .10 .09

-. so - .36 - .26 - .02 * a1.

6-.01 6.1.00 6-10.90 .01 = .03

, ..03 .64 o1 .03 a .08

n * .023 AD .,030 No , .051 NO O02 No a .106

IL

.0 .2 w2. .*..
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discussed above and whose data are displayed in Table 5. The important thing

I Insert Table 5 about here

* to note is that subject 26 is consistently sub-additive (and this is predicted

quite well by the model); subject 18 is generally additive, as implied by

PC .50; subject 15 is super-additive, but not consistently so; subject 3 is

additive; subject 32 is both highly sub-additLve and inconsistent. From our

perspective, these results strengthen our interpretation of the e and 0

parameters, as well as the general form of the model.

A possible criticism of the above experiment is that although we investi-

gated the responses of 32 individual subjects in depth, we only obtained

L
responses to a single scenario. In other words, are our results simply a

function of the content of the specific scenario investigated? Therefore we

• :ran another 32 subjects using four different content scenarios but with the

same numerical values as in the scenario involving the automobile accident.

These scenarios involved: (1) A taste test where people had to identify a

soft drink (Coke vs. Pepsi), (2) A bank robbery where witnesses said the

robbers spoke to each other in a foreign language (German vs. Italian); (3) An

experiment where 6 year old children had to identify words flashed on a screen

(ROT vs. BED); and, (4) Experts investigating the cause of a fire (arson vs.

short-circuit). Eight subjects were assigned at random to each scenario.

Since the results from these four scenarios parallel those of the automobile-

accident-scenario in terms of model fits (albeit with different parameter

values), they are not presented here.

* 3periuent 2

We had two goals in conducting experiment 2. First, we wished to test

systematically for the effects of source credibility and signal dissimilarity

- -. ° -- °-,



TABLE 5

Additivity/Non-additivity of Complementary Probabilities

Subject Subject Subject Subject Subject
#26 #18 #15 #3 #32

1 0 2 .85 1.00 .80 1.00 1.06 1.00 .99 1.00 .70 1.00

1 0 6 .92 1.00 .99 1.00 .59 1.00 .99 1.00 1.10 1.00

1 0 12 .99 1.00 1.00 1.00 1.09 1.00 .99 1.00 1.00 1.00

1 0 20 1.00 1.00 .99 1.00 1.00 1.00 .99 1.00 .80 1.00

.89 .11 9 .91 .95 1.01 1.00 .96 1.02 .99 1.00 .80 .81

.89 .11 18 .92 .97 1.00 1.00 .99 1.01 1.01 1.00 .90 .91

.89 .11 18 .95 .97 1.00 1.00 .96 1.01 1.01 1.00 .80 .91

----

.60 .20 5 .95 .90 1.01 1.00 1.08 1.05 1.00 1.00 .80 .65

.80 .80 10 .94 .95 1.01 1.00 1.06 1.03 1.00 1.00 .70 .83

.80 .20 10 .96 .95 1.20 1.00 1.10 1.03 1.00 1.00 .80 .83--- -- --- -- -- --- -- -- --- -- -- --- -- -- --- -- -- --- -- -- --- -- -- --- -- --

.75 .25 4 .82 .88 .90 1.00 .96 1.07 .91 1.00 .40 .57

.67 .33 6 .86 .92 .99 1.00 .97 1.05 1.01 1.00 1.00 .71

.67 .33 6 .87 .92 .96 1.00 1.10 1.05 1.00 1.00 .50 .71

.67 .33 9 .85 .95 .99 1.00 1.00 1.03 .99 1.00 .50 .81

.67 .33 18 .93 .97 .99 1.00 .98 1.02 1.00 1.00 1.00 .90

.60 .40 5 .88 .90 1.00 1.00 1.09 1.06 .99 1.00 .80 .65

:60 .40 10 .97 .95 1.00 1.00 1.00 1.03 1.00 1.00 .90 .82

-----------------------------------------------------------------------------------------------

.50 .50 2 .76 .75 1.00 1.00 1.14 1.14 1.00 .99 .40 .12

.50 .50 8 1.00 .94 .98 1.00 1.06 1.03 1.00 1.00 .60 .78

.50 .50 8 .84 .94 1.00 1.00 1.04 1.03 1.00 1.00 .60 .78

.50 .50 12 .94 .96 1.00 1.00 1.08 1.02 1.00 1.00 .60 .85

.50 .50 20 .96 .98 1.02 1.00 1.10 1.01 1.00 1.00 .60 .91

-----------------------------------------------------------------------------------------------

eo-.50 O°.36 G'. -o2 -- 1.83

, .01 B , 1.00 B - 10.90 8 - .01 - .03

* %.* *.-. .... ~-., *:::1.::§11L %'~%~~ .;.: .~..'>.K" .



28

on the parameters of the model. In accordance with our theory, e' should

decrease as source credibility and signal dissimilarity increase. Second, we

wished to investigate the importance of individual differences in the way

people cope with the ambiguity inherent in our judgment task.

METHOD

Design. Two levels (high/low) of source credibility and dissimilarity of

signals were crossed in a 2 x 2 factorial design. In addition, four different

* content scenarios were constructed that varied on all four experimental

combinations (resulting in 16 different stories). Subjects were asked to

judge 21 stimuli that varied in p and n (see below) for each of the four

content-distinct scenarios. Thus, each subject initially made 84 probability

judgments. However, to reduce boredom in the task, subjects made judgments in

all four scenarios, with each scenario representing one of the four experi-

mental conditions. For example, subject 1 received scenario A in the

high/high condition, scenario B in the high/low condition, and so on. A four-

person latin-square was set up so that every scenario appeared an equal number

of times in each experimental condition. Finally, since subjects made judg-

ments in one scenario under the high/high condition, the same scenario was

also given in the low/low condition (and the order was counter-balanced). In

this way, we were able to examine each subject's judgments holding the content

of the scenario constant. This part of the experiment required 21 additional

judgments, making the total number of responses for each subject equal to 105.

Stimuli. The four content scenarios used involved the automobile

accident from experiment 1, the word-reconition task described above and two

new stories. These latter scenarios involved determining the name of a play

from an excerpt, and the diagnosis of a medical condition. Four versions of

.A.

- - - -- -----. -
N. %
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each scenario were constructed to reflect different levels of credibility and

dissimilarity (e.g., in the word-recognition task, we had 15 vs. 6 year olds

and BD vs. ROT an opposed to BE vs. BID). Within each scenario, subjects

were given 21 stimuli that reflected the amount of evidence for each

hypothesis. The values of the stLmuli were different from those used in

experiment I in that smaller values of n were used in order to provide more

sensitive tests of the model. The stimuli used were: for p - 0, 1, n - 1, 2,

6; for p - .125, .875, n - 8; for p - .2, .8, n - 5; for p - .25, .75, n - 4;

for p - .33, .67, n - 6, 9; for p - .67, n - 3; for p - .4, .6, n - 5; for p '

.5, n -2, 8.

Subjects and Procedures. Thirty-two subjects participated in this

experiment (comprising 8, 4-person latin-squares). Subjects were paid $5 per

hour and the task took about one hour to complete. The tasks were presented

in booklets and after each series of 21 judgments, subjects were either given

a break or another task. At the end of the experiment, a manipulation check

was performed on the credibility and dissimilarity induction. Specifically,

each subject was asked to rate (using a 0-100 scale) the credibility of the

source and the confusability of the signals in all four scenarios. Since each

scenario had high and low levels of each factor, the subjects rated credibil-

ity and dissimilarity under both conditions. Therefore, subjects made 4

judgments on each of the 4 scenarios.

* Results

Before presenting the main results, we note that the manipulation check

showed that subjects did, on average, see the "high" credibility versions of

the same scenarios as greater than the low (80 vs. 47); and the high dis-

similarity signals as less confusable than the low (30 vs. 62).
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(1) General fit of the model: For each subject in each experimental

condition, the model was fit to yield estimates of 9' and $ (this resulted

in 160 models - 32 subjects x 5 models). The fit of the individual models was

comparable to that of experiment 1 (median MAD - .042 over all conditions).

(2) anipulation of e': 2he appropriate analysis-of-variance (2 x 2

x latin-square) was performed using 0' as the dependent variable and the

results showed a significant main effect for "credibility" (p < .001), no

main effect for ndissimilarity," and a three-way interaction of scenario x

credibility x dissimilarity (p < .02). The results for the main effect are

shown in Table 6. The table shows that 0' does increase as the credibility

Insert Table 6 about here

of the source decreases, thereby confirming our prediction. However, there

was no effect for dissimilarity, contrary to our prediction. The three-way

interaction showed that in two scenarios, the effect of dissimilarity of the

signals had a large effect on 0' when credibility was low, while in the

other two scenarios, dissimilarity had a large effect when credibility was

high. However, it is not clear why this occurred and we do not consider it

further.

in addition to the above analysis, recall that each subject also received

the same scenario in the high/high and low/low conditions. A comparison of

the means of the estimated " 's in these two conditions also showed a sig-

nificant difference in the hypothesized direction; i.e., ?* - .17 in the

high/high condition, G' - .29 in the low/low (p < .004 by a paired t-test).

Thus, with the exception of an effect for the dissimilarity of the signals,

our hypotheses concerning 0' are supported by the experimental data.

(3) Individual differences: We now consider the following: (a) can

subjects be characterized as having a general strategy, as measured by the

..a - ,-: . ... . ..- . -.. ... .j.rd~ ..-...- *:-. ..... ,. ,.;. .. .. _., , ... ..- :. : . s. .-.. ..' :. . . -... ,. / -..



TABLE 6

Experiment 3 - Mean e~Parameters
by Experimental Conditions

Dissimilarity

High LOW

High .1 .20 .19
CredbilitY<

LO .1.29.3

924 .25.
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consistency of their 0' and B values, in different scenarios?; (b) is the

amount of one's adjustment, as measured by e', systematically related to the

consistency of executing one's strategy?; (c) can individual perceptions of

the credibility of the source and the dissimilarity of the signals account for

variance in e and w within each of the experimental conditions?

(a) Recall that for each subject, four different scenarios were given and

a model fit to the data in each. Therefore, each subject can be characterized

by four V's, B's, and MD's. To determine if the parameter values were

more alike within a subject than between subjects (this is measured by the

intra-class correlation), a one-way repeated analysis-of-variance was per-

formed (32 x 4) for e, PC, and MAD (Winer, 1963, chap. 3). The results

shoved that for e', r .73 (p < .001); forp, r .68 (p < .001); and

for MAD, r - .86 (p < .001). These results are particularly striking when one

recalls that the four scenarios varied over the four experimental conditions.

However, in spite of these differences, the results show strong and stable

individual strategies in the amount that is adjusted (0), the direction

of the adjustments (pc or 0), and the consistency of executing one's

strategy (MAD).

(b) In experiment 1, we found a significant positive correlation between

0' and iAD. The same positive relation was found here in three of the four

scenarios (r - .67, .48, .40, .10). Thus, our interpretation of 0 as

reflecting a cognitive simulation process is strengthened by the generality of

this finding.

(c) Since each subject made independent judgments of the credibility and

confusability of the experimental stimuli, we wex also able to investigate how

these judgments related to 0' within experimental conditions. To do so, we

re-analyzed our data with a regression model where 0' was the dependent

Ok..............................................
.. ..... .. .. ...... .. .:.. .. ...:...:..... . A S ! Z .SA . 5 . St I S.:. ..:.:...: .. ... :.:.: .: . .:.:.: : .,:.: ..: .: .. :.:.: .
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variable, and the individual ratings of credibility and confusability, together

with dummy variables representing the different scenarios, were the independent

variables. More precisely, there is a regression equation of this type for each

of the four experimental conditions. However, these four equations can he

estimated more efficiently as a single model using Zellner's (1962) procedure

for aseemingly unrelated" regressions. The multiple R estimated by this

- procedure was .44 (with an adjusted R of .35). Of the independent variables,

there was no effect for either scenarios or confusability. However, all four

coefficients for credibility in the different experimental conditions were

significant (p < .02) and of the hypothesized sign (i.e., a negative relation

between e and ratings of credibility). We interpret these results as

strengthening the conclusions drawn from the more standard ANOVA of our study;

that is, 0' is not only affected by different levels of credibility across

all subjects, it also covaries significantly with individual perceptions of

credibility within each of these levels.

Experiment 3

The purpose of this experiment was to answer the following question: Can

individuals' choices between gambles be predicted from knowledge of their e

- and 0 parameters obtained from a separate inference task? To examine this,

subjects were first asked to make judgments as in experiments 1-2 and both

.- e' and 0 were estimated as before. The subjects were then asked to choose

(or express indifference) between 9 pairs of gambles involving the outcome from

an urn with known probability versus the occurrence of an event on the basis of

" unreliable reports. If e and $ do capture aspects of ambiguity that affect

• .choice, knowledge of these parameters should allow one to predict individual

- choices in addition to inferences.

.. '4:
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Subjects. Twenty subjects, recruited from the University of Chicago

community, participated in this study. They were paid $5/hour.

Stimuli. For the inference task, two different scenario. were used:

the automobile-accident story, and the taste-teat story (Pepsi vs. Coke) f or

which we had also previously collected data (see end of experiment 1).* These

*were chosen because the 0' and 0values were quite different in the two

cases. In both scenarios, subjects received 40 combinations of p and n

that were identical to those used in experiment .i The stimuli for the choice

task involved one of the following: (a) In the automobile-accident task,

*subjects were faced with choosing between betting that a ball drawn from an

urn with known probability was green, versus, betting that the car that caused

the accident was green based on witnesses' reports of the car color, ( For

those in the taste-test scenario, the choice was similarly between betting

that the outcome from an urn was a certain color, versus, betting that the

drink was Pepsi-Cola. in both scenarios, subjects were told to imagine that

their payoff for being correct would be $10. Thus, the payoffs for the urn

gamble and the bet involving the report of some event were equal. within

scenarios, each subject saw 9 pairs of gambles that varied in the proportion

* of colored balls in the urn and the proportion of reports favoring the

particular hypothesis. These proportions were always the sae in the two

bets. The exact values of p used in the 9 pairs were: 1, .875, .75, .625,

.50, .375, .25, .125, and 0. The number of balls in the urn and the number of

reports were hoeld constant at S.

Procedure. The 20 subjects were randomly assigned to one of the two

scenarios. The procedure for the inference task was identical to the previous

experiments. After subjects finished the inference task, they were presented

with the appropriate choice task. The nature of the two gambles was

bet -.Th e.ac vaue o p used~*J~J in! th 9 pair were 1 , .875, 2.75 .65 'p*. -
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explained, and subjects were then asked to choose, or indicate indifference,

between the gambles. If they were not indifferent, they were also asked to

indicate their strength of preference on a 4-point scale (from "little" to

"great dealu). After doing this for one value of p, they turned the page

and made another choice (and strength of preference rating, if appropriate) at

the next level of p. This continued until all 9 pairs had been considered.

. Therefore, for each subject, there were 9 choices between an unambiguous bet

from an urn with known p, versus an ambiguous bet that an event occurred, on

the basis of the proportion of favorable reports from an unreliable source.

Results. Since each subject first participated in the inference task,

we briefly consider these results before discussing the choice data. As

expected, there were marked differences in the e' and B parameters in the

two scenarios. The medians for 0' and pc (implied by 0) were .13 and

.11, respectively, in the automobile-accident scenario. For the taste-test

story, the median G" was 1.35 and median Pc - .45. Thus, the taste-test

scenario induced mch adjustment, with a cross-over point near .50, while the

automobile-accident story induced less adjustment but a lower cross-over

point.

To compare each subject's choices with predictions from the inference

model, the following procedure was used: any combination of e' and pc

implies when and where $(pA ) is greater, less than, or equal to, pA (see

equation (8)). Thus, for each subject, when pA > s(pA), we predicted the

- urn would be chosen over the bet based on unreliable reports; when S(pA) >

" pA, the opposite prediction was made; when S(PA) - pA, we predicted

indifference between the two gambles. Note that when G' - 0, we always

predicted indifference between the gambles since S(PA ) - PA for all

In Table 7, we show the 0' and p values for each subject (grouped by

* , 
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Insert Table 7 about here

scenario), and the number of correct choice predictions by subject.

To evaluate how well the choices were predicted from knowledge of G

and p . we used a random baseline for comparison; i.e., for each of the 9

choices made by a subject, there were three possible outcomes; urn, report,

or indifference. Since the probability of randomly predicting the correct

response is 1/3, we computed the probability of getting at least r hits in 9

trials on the basis of chance (using the binomial distribution). This prob-

ability is shown in the last column of Table 7. For example, subject 1 was

correctly predicted in 8 of the 9 choices; the probability of getting at least

this many hits by chance is .001. Thus, we rejected the hypothesis that our

predictions for this subject were no better than chance. Using this method

for all subjects, it can be seen that 5 of the 10 subjects in the automobile-

accident scenario, and 4 of 10 in the taste-test, are well predicted using a

type I error level of .05. if this error level were increased to .15, a

majority of subjects (12/20) would be accurately predicted from their infer-

ence parameters. In any event, at the aggregate level (over subjects and

scenarios), there were 103 hits out of 179 predictions (one response was

missing). The probability of getting at least this many hits by chance is

miniscule.

Second, consider the results concerning the strength of preference

ratings. Recall that in addition to choosing between gambles, subjects were

asked to rate their strength of preference on a 4-point scale. These ratings

supplement our analysis of the choice data in the following way: in each

scenario, the number of prediction errors was 38. However, in the taste-test,

0' is much larger than in the automobile-accident scenario. Since 0' is

directly related to the amount of adjustment to *A, the differences

.... .. . .... .. ..- . *e . . .'.. *.- *-o" *.". .o*.'.'...,"*' .'.. .. '.-.." ** .'.- P ",-",P€ '*.***.. 



TABLE 7

Choice Predictions from Knowledge of e~and P
VP

a N o. of Prob.
Si hits (r hits)

1 .00 a .001

2 .00 -1 .849

3 .00 -3 .612

4 .00 -4 .341

3ntomobile-Zecident 5 .5 .7 7.0

Scenario 6 .10 .74 5 .140

7 .16 .15 6 .040

S .19 .20 6 .040

9 .63 .02 5 .140

10 .75 .50 6 .040

-- ------------------------------------------------------------------------------

11 .20 .21 7 .008

12 .24 .07 4 .341

13 .66 .50 4 .341

14 .80 .50 1 .970

Taste-Test 15 .96 .50 5 .140

Scenario 16 1.50 .50 7 .008

17 1.71 .40 7 .008

18 1.99 .50 5 .140

19 2.01 .06 9 .000

20 3.20 .02 3 .612
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between SW and p should be larger in the taste-test than in the

accident story. Frthermore, the larger the differences, the stronger one's

preferences should be since they are further away from indifference (where

pk a 8CPA)). We tested this by comparing the mean strength-of-preference

ratings in the two stories across the nine levels of p. These results are

shown in Table 8. First, note that the means for the taste-test are larger

Insert Table 8 about here

than the automobile-accident at every level of p. Second, the pattern of

means is consistent with the general form of the model in that preferences are

* strongest at p - 1, decrease as p approaches p., and then increase again

at p - 0. Therefore, the strength-of-preerence data are consistent with

both the difference in the sizes of G for the two scenarios, as well as the

general form of the model.

As the astute reader may have noticed, our theory does not necessarily

* imply exact equivalence between choice and inference tasks since these could

differ with respect to the 0 parameter. in particular, while payoffs are

explicit in the choice task (i.e., a gain of $10), there are no explicit

payoffs in the inference task. Thus, one might expect a systematic bias

* between 0 as estimated in the inference task, and B as implied by

subjects' choices. Specifically, as stated after first presenting our model,

if the effect of ambiguity is to induce caution rather than riskiness, then

the prospect of a gain would focus attention more on smaller rather than

larger values of p(Gain) such that Bh ( B e (Conversely, thechoice inference*

prospect of a loss would imply more attention being paid to greater rather

smaller values of p(Loss) such that > B e u. Consequently,

oie inference

one would expect ambiguity avoidance over a wider range of p in tasks

Sinvolving choice as opposed to inference. indeed, some of the errors in

I•, "
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Means of Strength-of-Preference
for Two Scenarios

Automobile Both
p Accident Tas te-test Scenarios

1 3.1 3.7 3.40

.87S 2.5 3.1 2.80.

5.750 2.0 2.5 2.25

.625 1.6 2.1 1.85

.S00 .9 1.7 1.30

.375 1 .4 2.1 1.75

OL.250 1.3 2.1 1.70

.125 .9 2.0 1.45

0 1.8 2.2 2.00-

1,72 2.39 2.05
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predicting subjects' choices can be attributed to precisely this source of

systematic bias. Consider the data for the automobile-accident scenario in

Table 7. Right of the 10 subjects had low pc values in the inference task

and thus could be thought of as having already conceptualized the ta 1c in

term of "gains.0 On the other hand, for the two subjects with high pC's in

the inference task (numbers 6 and 10), all 7 prediction errors out of 18

choices were in the same direction, namely subjects' i's estimated in the

inference task indicated larger p ' than were revealed by their choices.
cr

The same bias was also found in the taste-test scenario. That is, consider

again only those subjects with high pc's (numbers 13 through 18). For 4 of

these subjects, all 15 out of 15 prediction errors are consistent with the

choice inference bias. The two prediction errors of one subject (number

16) are in the opposite direction, and the 8 prediction errors of subject 14

" "are equally distributed in both directions. To summarize, we conclude that

whereas individuals' parameters in an inference task can be used to predict

choices, many errors of prediction are in accord with a systematic bias in the

S parameter that is consistent with our theory.

Isperiment, 4

Having manipulated the G parameter in experiment 2, the purpose of

experiment 4 was to investigate the effects of manipulating B. This was done

by allocating subjects to different roles (sellers and buyers) in an insurance

context. The dependent variable of interest involved statements of maximum

buying prices and minimum selling prices. The data were collected as part of

a larger investigation by Hogarth and Kunreuther (1984) on the effects of

ambiguity in insurance decision making.

The assumption underlying the experimental manipulation is that a person

L
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p(Loss) than someone who transfers the risk. Experimental evidence consistent

with this assertion has been documented by Hershey, Kunreuther, and Schoemaker

(1982) and Thaler (1980). Zn our framework, it implies that 0eeller > i buyer'

Given this assumption, approximate ambiguity functions for buyers and sellers

of insurance can be sketched as in Figure 4. Note that when buyers/sellers in

Inset Fiure4 about here -:

a non-ambiguous situation, S(pA) " PA and all responses are on the diagonal.

If one further assumes that buying and selling prices are monotonically

related to S(pA), Figure 4 suggests the following predictions: (1) When

buyers and sellers are in a non-ambiguous situation, S(p.) PA' and the

seller's price should equal the buyer's; (2) When buyers and sellers are

equally ambiguous (i.e., their O's are equal), the seller's price should

exceed the buyer's over the whole range of pA . Note that this arises because

the seller always weights imaginary values of p(Loes) larger than the

initial estimate nore than the buyer. (3) Consider a seller who has no

ambiguity about the probability of a loss, but a buyer who does. in Figure 4,

this is shown by comparing the buyer-ambiguous function with the diagonal

(seller-unambiguous). Note that the buyer's function is above the diagonal

for PA < Pc" This means that the buyer will perceive the probability of lose

as higher than the seller, and should be willing to pay more than the seller

would ask. However, when PA > p 0, the buyer will perceive the loss prob-

ability as lower than the seller, and offer less than the seller would ask.

This implication of the model provides a particularly stringent test for our

theory. Experiment 4 was designed to test the above three predictions.

'.1'-'. I''a
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KETHOD

Design. Prices for insurance contingent on ambiguous and non-ambiguous

probabilities were investigated across four different probability levels '.01,
V..

.35, .65, and .90). Each subject was assigned the role of buyer or seller of

a contract concerning a potential $100,000 loss and responded to both ambig-

uous and non-ambiguous versions of the stimulus at one probability level.

Thus, the design of the experiment involved three factors, two of which were

between subjects (i.e., role of buyer or seller, and probability level) and

one within subjects (i.e., ambiguous vs. non-ambiguous probabilities).

Stimuli. The scenario used in the stimulus material involved the owner

of a small business (net assets of $110,000) who was seeking to insure against

a $100,000 loss that could result from claims concerning a defective product.

Subjects assigned the role of buyers were told to imagine that they were the

owner of the business. Subjects assigned the role of sellers were asked to

imagine that they headed a department in a large insurance company and were

authorized to set premiums for the level of risk involved. Ambiguity was

manipulated by factors involving how well the manufacturing process was

understood, whether the reliabilities of machines used in the process were

known, and the extent to which manufacturing records were well kept. in both

ambiguous and non-ambiguous cases a specific probability level was stated

(e.g., .01); however a comment was also added as to whether one could "feel

confident" (non-ambiguous case) or "experience considerable uncertainty"

(ambiguous case) concerning the estimate. As far as possible, the same

wording was used in both the buyer and seller versions so that perceptions of

-. mbiguity would be uniform in the two cases.

Subjects and procedures. Subjects were 111 KEA students at the

University of Chicago who responded to questionnaires distributed in a course

,. ..
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on decision making. To avoid prior influence, the experiment took place

during the beginning of classes. Subjects were asked to respond to the

questionnaire in anonymous fashion and promised group-level feedback at a

later class session (which they subsequently received). It is important to

note that subjects had prior training in business, economics, and statistics,

and the insurance context was familiar to them. Eight different forms of the

stimulus materials, corresponding to the 2 (roles) x 4 (probability levels),

were shuffled and distributed in the classrooms thereby ensuring random

allocation of subjects to conditions. After reading each stimulus, subjects

were asked to state maximum buying prices (for buyers) or minimum selling

prices (for sellers).

Results. Table 9 reports medians for all experimental conditions as well

as the differences between the sellers and buyers for the ambiguous and non-

Insert Table 9 about here

ambiguous cases respectively. We report medians since several distributions

within conditions are quite skewed, and variances also differ between cells at

the same probability levels, often significantly. The pattern of results in

Table 9 supports our three predictions. First, in comparing buyers and

sellers in the non-ambiguous case, note that the median prices are quite

similar over the four probability levels. Second, when buyers and sellers are

both ambiguous, observe that the selling price is considerably larger than the

buying price at every level of p. This result strongly confirms the notion

that 08eller > 8buyer when considering ambiguous loss probabilities. Third,

consider the ambiguous buyer and the non-ambiguous seller. As expected,

when p is small (.01), the ambiguous buyer is willing to pay more ($1,500)

than the non-ambiguous seller asks ($1,000). However, as the probability of

loss increases, the two prices converge (at p - .35), and then diverge, with

" .'-.'.'-'',','-;',;'.;""-';-" "" "".""."",'" . ". """'""-"".' ."'" "" "" " ." ." " " "" '"' " "'"""."'" "" "" ""',".". " "," ". -'" "" " "" "" "" '"'"""." "



XOh

rpt

0e06

A.A

0 t

o m
co

fA p

CD ul
CD a

CU



- • *
•

... *

41

the buyer's price bei- less than the seller's (at p = .65, .90). Indeed, at

higher probabilities, the buyer is willing to spend considerably less than the

seller vants to charge. Therefore, although the buyers seem to be ambiguity

avoiding at low probabilities, they paradoxically appear to be ambiguity

seeking for high loss probabilities. Both results are predicted by our

model. In Rogarth and Kunreuther (1984), the results of several other related

experiments are reported using different scenarios, research designs,

subjects, and response modes. The results of these experiments are consistent

with those reported here, thus attesting to the stability of the phenomena.

DISCUSSION

We now discuss the implications of our theory and results with respect to

the following issues: (1) the importance of ambiguity in assessing uncer-

tainty, (2) the use of cognitive strategies in probabilistic judgments under

ambiguity; (3) the role of ambiguity in risky choice; and, (4) extensions of

the model to multiple sources and time periods.

ambiguity and the Assessment of Gacertainty

The concept of ambiguity highlights the distinction between one's lack of

knowledge of the process that generates outcomes and the uncertainty of

outcomes conditional on some model of the process. The fact that there are at

" least two sources of uncertainty in most situations leads to the irony that

one needs a well-defined model to give precise estimates of how much one

*doesn't know. Indeed, the usefulness of formulating well-defined stochastic

processes is in eliminating ambiguity so that outcome uncertainty can be

quantified. Thus, when coins are "fair" or random drawings are taken from

urns with known p, there is no second-order uncertainty. Furthermore, the

conditional nature of uncertainty is implicitly recognized in various attempts

o , .. * .-* . .... *.. .. - o
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to quantify and improve inferential judgments. For example, consider how

*uncertainty is defined in the "Ins model* (Hammond, et al., 1964). In thisI- case, the uncertainty in the environment is measured as the residual variance
not accounted for by a well-formulated ecological model. Thus, unexplained

variance or uncertainty is conditional on the model of how particular cues

combine to form the criterion of interest. Now consider the work of Nisbett

and colleagues on trying to improve probabilistic judgments through training

(Nisbett, et al., 1983; Jepson, et al., 1983). They argue that training and

experience can allow one to see the underlying structure of real-world

problems so that the appropriate model can be used for making better judg-

ments. Thus, the focus of their training is on making various statistical

principles (e.g., regression-to-the-mean, law of large numbers, use of base

rates, etc.) more obvious in everyday inferences.

While the conditional nature of uncertainty has been implicitly

recognized, ambiguity results from its explicit recognition; i.e., by

realizing that the wooelm is itself subject to uncertainty. Indeed, one

could argue that the cost of urn models, coin-flipping analogies, and the

"* like, is that they obscure the fact that most real world generating processes

are not precisely known. Furthermore, even if a process is well-defined at

*one point in time, the parameter(s) of the process can change over time,

resulting in ambiguity as well as uncertainty. For example, imagine that you

have been asked to evaluate the research output of a younger collea.jue being

considered for promotion. Your colleague has produced 11 papers; of these the

first 9 (in chronological order) represent competent, albeit unexciting

scholarly work. On the other hand, the latter 2 papers are quite different;

they are innovative and suggest a creativity and depth of thought absent from

the earlier work. What should you do? As someone who is aware of regression
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fallacies, you might consider the two outstanding papers as outliers from a

stable generating process and thus predict regression-to-the-mean.

Alternatively, you might consider the outstanding papers as "extreme"

responses that signal a change in the generating process; i.e., a new and

higher mean. If this were the case, the same general regression model would

predict future papers of high quality (regression to a higher mean). If one

asks what is the nature of the signaling in this case, it is obvious that the

chronological order of the papers is crucial. Indeed, imagine that the

outstanding papers were the first two that were written; or consider that they

were the second and sixth. Each of these cases suggests a different under-

lying model and perhaps a different prediction. In any event, the uncertainty

associated with any prediction is complicated by the ambiguity regarding the

appropriate mean of the regression process.

Cognitive Strategies in inferences Under Ambiguity

We have assumed that people use an anchoring-and-adjustment strategy in

making inferences under ambiguity. However, whereas the term, "anchoring-and-

adjustment* is quite general and could encompass a wide range of models (cf.

Lopes, 1981; Einhorn a Hogarth, 1984), we have been quite specific as to the

nature of this process in our tasks. Of greatest interest in this regard is

the idea that adjustments are based on a mental simulation in which "what

might be," or, "what might have been," is combined with "what is" (the

anchor). The rationale for this comes from the fact that the evaluation of

evidence often involves an implicit comparison process (similar to the

perception of figure against ground). Thus, when evaluating the strength of

evidence for a particular hypothesis, the evidence that might have been can

serve as a convenient contrast case for comparison. Furthermore, since

ambiguity implies that multiple models could have produced the observed

IV
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results, it seem natural to consider that different results could have

occurred on the basis of different underlying processes.

The support for the hypothesized anchoring-and-adjustment strategy

comaes from several sources. First, recall that in our model, the largest

adjustments to the anchor occur when evidence is meager. Moreover, as n

increases, S(f:c) asymptotes at PA. The results of experiments 1 and 2

support this prediction. Thus, the weight of evidence (to use Keynes' term)

for Owhat is," dominates "what might have been" as the absolute amount of

evidence increases. Furthermore, the effect of increasing n is to reduce

the amount of non-additivity of complementary strengths. Since most of our

subjects were sub-additive, our model provides a psychological link to

concerns expressed by others regarding the appropriateness of additivity when

evidence is meager (Shafer, 19761 Cohen, 1977). In particular, Cohen (1977,

chap. 3) points out that when one considers an incomplete system, the lower

benchmark on provability is not necessarily disprovability, but nonprov- :.

ability. For example, if one has meager circumstantial evidence such that the

probability of the truth of a particular theory is .2, does this imply that

the theory is false with p - .8? Rather, one might say that the theory is

not proven (in a probabilistic sense) as opposed to saying that there is a .80

chance that it is wrong. Furthermore, the idea that the complement of

statements can lead to snot-proved" rather than Odisproved," seems to be

d3eply imbedded in the Anglo-American legal system. Indeed, in Scottish law,

defendants are either found guilty, not-guilty, or "not proven." The last

category is reserved for those cases where the evidence is too meager to allow

for a judgment of quilt or innocence.

Second, the fact that non-additivity results from a shift in the

direction of the adjustment process is consistent with other "order effects"

... . .. . . .. .
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due to the use of anchoring-and-adjustment strategies. For example, in a

traditional Bayesian revision task, Lopes (1981) found that a change in the

order in which sample information was presented affected overall judgments by

changing the anchor. Thus, consider having to judge whether samples come from

an urn containing predominantly red or blue balls (70/30 in both cases). You

first draw a sample of 8 that shows (SR, 38). Thereafter, you draw another

sample of 8 with the result (iR:IB). After each sample, you are asked how

likely it is that you have drawn from the predominantly red urn. When the

sample evidence is in the order given here, people seem to anchor on the first

sample (5:3) and then adjust up for the second (stronger) sample. However,

when the order of the samples is reversed, people anchor on (7:1) and adjust

down for the weaker, second sample. This effect cannot be accounted for by

assuming that people are using a Bayesian procedure (which treats the two

situations as equal), but it does follow from an anchoring and adjustment

process in which the anchor is weighted more heavily than the adjustment.

Third, the results of experiment 2 provide important evidence regarding

the process assumed to underlie the model. In addition to the fact that the

experimental manipulation of source credibility affected 0' as predicted,

two other results were found; a positive correlation between 0' and MAD and,

the stability of individual differences in 0', 0, and MAD across scenarios.

The first result bears directly on the nature of the adjustment process since

it suggests a "cost" of engaging in mental simulation; namely, a concomitant

lack of control over one's strategy (Hammond & Summers, 1972). The second

result suggests strong personal propensities in evaluating evidence that

transcend the particular content of scenarios. While it is too early to

explicate the nature of these individual differences, their existence lends

support to the idea that the parameters of our model do capture important .-

.*-"
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aspects of the process that determines judgments under ambiguity.

While our model accounts for the rather simple inferences we have. -

studied, it also relates to an important class of inferences that result from

'surprise." Consider Figure 5, which shows one's expectations for p as a

Insert Figure 5 about here

function of the credibility of the source and the dissimilarity of the signals.

First, note that when credibility and dissimilarity are high, one expects p to

be very high or low (recall our earlier example of cameras taking pictures of a

bank robber). However, imagine that one camera showed the bank robber to be

white, and the other showed him to be black. Such a result, where p - .5, would

be surprising given the credibility of cameras and the dissimilarity of white and

black robbers. Indeed, the data "are not good enough," which is represented by

the range of p indicated by the two-headed arrow. Second, consider the low

credibility-low dissimilarity situation; e.g., the taste-test scenario. Imagine

that you were told that of the 20 people in the Pepsi vs. Coke taste-test, all

correctly identified the drink as Pepsi. Such a result, where p - 1, would

be surprising. However, this type of surprise is one where the 'data are too

good' rather than not good enough. Thus, there are two types of surprise and

both occur when ambiguity is low. Indeed, when ambiguity is high, expecta-

tions are weak and surprise (which results from a violation of expectations)

is unlikely. This situation characterizes the off-diagonal cells in the

figure and accounts for our labeling these 'little surprise.'

Although our conceptual scheme makes clear when surprise is likely to

occur, it cannot handle the variety of possible reactions it can engender.

For example, when data are not good enough, it is possible to reduce the "

credibility of the source (e.g., the cameras were broken), synthesize the

hypotheses (there were two bank robbers, one white and the other black), or

-. .. '. . ... * *C . . . .. * '. *. . .. .. . .. ... ..*.
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otherwise make sense of the data by changing the story (e.g., there were two

bank robberies on successive days). On the other hand, when data are too

good, inferences of fraud, collusion, and the like, are possible (see, e.g.,

Kamin, 1974 on Burt's twin data; Bishop, Fienberg, a Holland, 1975, on

Mendel's pea experiments). An interesting aspect of such inferences is that

the surface meaning of the data can suggest the opposite conclusion; e.g.,.

consider someone who "protesteth too much," or a suspect who was "framed" for

a crime. Indeed, this is implied by our model. Specifically, consider the

case of totally unreliable data which imply e I 1 (see equation (6)). In

this case,

S(P A ) - 1 - (1)

Thus, as pA increases, S(pA ) decreases. More generally, as e

increases, it will reach a point, conditional on pA and B, where the

evidence for a hypothesis will start to be counted against it.

Ambiguity and Risk

Although the importance of ambiguity for understanding risk has been

evident since Ellsberg's original article, its omission from the voluminous

literature on risk is puzzling. One reason may be the reliance on the

explicit lottery, with stated payoffs and probabilities, for representing

risky choice. Indeed, as Lopes (1983) has noted,

The simple, static lottery or gamble is as indispensable to
research on risk as is the fruitfly to genetics. The reason
is obvious; lotteries, like fruitflies, provide a simplified -""

laboratory model of the real world, one that displays its
essential characteristics while allowing for the manipulation
and control of important experimental variables. (1983, p. 137)

It should be further noted that the explicit lottery has been of equal

importance to those interested in axiom systems and formal models of risk.

While explicit lotteries have been, and continue to be, useful for

..."-. 7
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studying risk, the ambiguities surrounding real world processes in domains

such as nuclear power, environmental safety, and the like, accentuate the

incomplete nature of such representations. Indeed, Ellsberg pointed out the

particular importance of ambiguity in understanding people's reactions to new.

technologies (also see, Edwards &von Winterfeldt, 1982, for a historical look

at reactions to earlier technological innovations). In any event, the neglect

of ambiguity in theories of risk is slowly giving way to interest at both the

formal-axiomatic level (e.g., Fishburn, 1983a, 1983b; Gardenfors Sahlin,

1982; 1983; Morris, 1983) as well as the psychological level (Lopes, 1983).

Our model of inference under ambiguity has several implications for

descriptive models of risky choice. First, since the B parameter can be

related to the desirability of outcomes, the model implies a form of utility x

probability interaction. Moreover, experiment 4 provides direct evidence for

this interaction. However, the utility x probability interaction only has an

effect in the presence of ambiguity, i.e., when 0 > 0. Thus, whereas the

bilinear assumption may be appropriate for models that exclude the effects of

ambiguity (e.g., Kahneman & Tversky, 1979), it is not clear that this

assumption can be maintained when ambiguity prevails. Second, both our model

and data show that the net effect of the adjustment process (i.e., k) varies

in magnitude with the level of pA. Thus, theories of inference that weight

probabilities according to some *reliability" factor (e.g., Grdenfors a

Sahlin, 1982) need to consider this interaction explicitly to achieve

descriptive realism. Third, the model highlights the difficulty of inferring

underlying attitudes toward risk from choices made in ambiguous circumstances.

For example, a person buying insurance against a potential loss that is

contingent on a small, ambiguous probability might appear risk averse;

however, the same person could appear to be risk-seekinq if the probability

.!
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were larger (cf. experiment 4). Viewed from the framework of expected utility

theory, such behavior would imply an inconsistent utility function. However,

this need not be the case since the apparent changes in risk attitude could

result from the effects of abiyity. At the very least, our model provides a

way of analyzing the sources of such seemingly inconsistent behavior. As

ogarth and Munreuther (1984) point out, scholars have often attqmpted to

resolve anomalous choice patterns by considering different forms of utility

functions. On the other hand, transformations of probabilities have received

* far loe formal attention (for an exception, see Xarmarkar, 1978). Finally,

whereas our model does not explicate all aspects of ambiguous choice, it does

suggest exciting possibilities for further work in this area.

Rtenions to Multiple Sources and Time Periods

To examine inferences under ambiguity in depth, we have restricted

ourselves to how evidence from a single source is evaluated at one point in

time. However, consider the more realistic situation where decision makers

receive information from multiple source-types (including base rates) over

multiple time periods. the aggregation of information over source-types and

time can be conceptualized by an "evidence matrix" that has source-types for

rows and tine periods for columns. Such a matrix is shown in Figure 6. The

InetFiqure 6 about h~ere

entries in each cell of the matrix reflect the conflicting evidence received

from a source-type in that period. The matrix provides a simple yet powerful

way to look at a wide variety of inference problems. In particular, by

focusing on source-types (rows) or time periods (columns), one can look at the

combining of information either longitudinally, cross-sectionally, or both.

Furthermore, the issues of reliability and ambiguity become quite complex here

.:.,-
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so;

since there can be differential source reliability, varying numbers of reports

per source, and the sources may not be "independent." While the challenge of

understanding how people incorporate such factors into their judgments is

formidable, the complexity of inferences in real world settings requires that

attention be paid to these issues.

CONCLUSIlON

In considering the role of ambiguity and uncertainty in inferential

judgments, we have developed a quantitative model that accounts for much

existing data as well as our own experimental findings. Furthermore, we have

shown how this model relates to Keynes' idea of the weight of evidence, the

non-additivity of complementary probabilities, risky choice, and current work

on cognitive heuristics. oreover, since inference involves "going beyond the

information given" (Bruner, 1957), an important way to do this is to con-

struct, via imagination, "what might have been" or "what might be." Such

constructions, whether the result of a cognitive simulation process as

proposed here, or more elaborate processes (as in resolving surprise), pose an

interesting and important trade-off for the organtsm. On the one hand, there

are costs of investing in imagination; increased mental effort and the

discomfort that results from greater uncertainty. On the other hand, the

benefits of considering the world as it isn't, protects one from over-

confidence and its nonadaptive consequences. Thus, finding the appropriate

compromise between "what is" and "what might have been" (or, "what might be"),

is central to inferences under ambiguity and unct etainty.

• q .'.r
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FOOTNOTES

This research was supported by a contract from the Office of Naval

Research. We wish to thank Haim Kano, Ann McGill, and Diane Vitiello for

their assistance on this project. in addition, the following people pro-

vided useful comments on earlier versions of the manuscript: Tom Dyckman,

William Goldstein, Steven Koche Joshua Klayman, Howard Kunreuther, John Payne,

Nils-Eric Sahlin, Amos Tversky, and Thomas S. Wallsten.

1At PA - 0, 1 there is no ambiguity. Hence, the relation between pA

and S(PA) should be discontinuous. indeed, the lack of ambiguity at the end

points provides a rationale for the discontinuity of the decision-weight

function and this implies the "certainty effect" of prospect theory (i.e., the

value of sure gambles is heightened either positively or negatively).

2A listing of the program in available from the authors.
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APPENDIX A

2his appendix considers the effects of different assumptions concerning

Zthe weights given in imagination to values of p greater and smaller than

PA. In equation (4), differential weighting is achieved by the B parameter;

i.e., kg 0(1 - pA) and k s - epB. However, one could also consider linear
8 A

weighting schemes where the weights given to Op and 01 p sun t one
A A u

(i.e., a weighted averaging process), or where the weights do not sum to

one. For the former, let

k k - Av( ) - -(1 - p
9 a wp (A.1)

- ew - )

where 0' w 4 1 is the relative weight given to greater values.

Substituting (A.1) into equation (6), we obtain,

1 (A ) = PA + (w -pA) (.1-:

where, S (pA) is used to denote alternative model 1. Note that in this

model, $1 (PA) is regressive with respect to p. Although this model has

appealing features, it is easy to show that it does not capture some aspects

of our model and data. Specifically, it always predicts additivity of

judgments of complementary events, i.e.,

1 (pAl S 11 -PA PA + e (w PA) + (1 - pal..

AA
However, non-additLviy will occur if the welght accorded to ( p is.one

and ep& do not sum to one. A special case of this model, which we denote,.-

82l(p a), and which is similar to the SlpA) model used in the paper, is one ..

where, . -

FI.



58 ":

k -ks -00 P A - A  (M > 0) (A.4)

This yields,

8$(p)-p + El-p -p, (A.5)
2A) PA + A UA

such that the add2tivity conditions are,

s 2 (PA) + S2(1 PA)  PA + - PA - PA' + (I - PA) + e (PA - m(-PA)'

= 1 + 9 (1-) (A.6)

Thus, for m > 1, the model predicts sub-additivity; for m = 1,

additivity; and for m < 1, super-additivity. The difference between

2 (p ) and S(pA) is that the former predicts a constant amount of non-

additivity irrespective of the value of pA" In the S(pA) model, the level

Of PA affects the amount of additivity. This is shown in equation (7),

which is reproduced here for convenience,

S(pA) + S(i - pA) 1 0 El - pP - (1 - )B ]
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